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Abstract

This paper employs the numerical assembly method (NAM) to determine the ‘‘exact’’ frequency–response amplitudes of

a multiple-span beam carrying a number of various concentrated elements and subjected to a harmonic force, and the exact

natural frequencies and mode shapes of the beam for the case of zero harmonic force. First, the coefficient matrices for the

intermediate concentrated elements, pinned support, applied force, left-end support and right-end support of a beam are

derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly

technique of the conventional finite element method (FEM). Finally, the exact dynamic response amplitude of the forced

vibrating system corresponding to each specified exciting frequency of the harmonic force is determined by solving the

simultaneous equations associated with the last overall coefficient matrix. The graph of dynamic response amplitudes

versus various exciting frequencies gives the frequency–response curve for any point of a multiple-span beam carrying a

number of various concentrated elements. For the case of zero harmonic force, the above-mentioned simultaneous

equations reduce to an eigenvalue problem so that natural frequencies and mode shapes of the beam can also be obtained.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A lot of reports have been published in the area about the vibration characteristics of a uniform beam
carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational
springs, spring-mass systems, etc.). In Refs. [1–4], various techniques were presented to perform the forced
vibration analysis of beams carrying one or two concentrated elements. Wu et al. found natural frequencies
and mode shapes of a uniform beam carrying any number of rigidly attached point masses [5] and elastically
attached point masses [6] by means of the analytical-and-numerical combined method. Naguleswaran [7]
found the natural frequencies of an Euler–Bernoulli beam with up to five elastic supports (including ends of
beam) by setting a fourth-order determinant to be zero. Wu and Chou [8] obtained the exact solution of a
uniform beam carrying any number of spring-mass systems by using the numerical assembly method (NAM).
Chen [9] studied the free vibration problem concerning uniform and non-uniform ‘‘single-span’’ beams
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Nomenclature

F̄ amplitude of external force
Fv harmonic force at the vth station
E Young’s modulus
I second moment of cross-sectional area of

the beam
i ith beam segment
Ju rotary inertia at the uth station
j

ffiffiffiffiffiffiffi
�1
p

KRu rotational spring constant at the uth
station

KTu translational (linear) spring constant at
the uth station

L total length of the beam
m̄ mass per unit length of the beam

mu lumped mass at the uth station
n total number of intermediate stations
q total number of equations for the inte-

gration constants
xu coordinate of station u

y(x,t) transverse displacement at position x and
time t for the beam

Y(x) amplitude of y(x,t)
Ȳ ðxÞ dimensionless amplitude of y(x,t)
O dimensionless frequency parameter for

the beam
o natural frequency of the beam
oe exciting frequency of the applied harmo-

nic force
xt dimensionless coordinate of tth station

( ¼ xt/L)
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carrying various concentrated elements. Employing the same technique as Chen [9], Lin and Tsai determined
the exact values of natural frequencies and associated mode shapes of a ‘‘multi-span’’ beam carrying a number
of point masses, spring-mass systems [10,11] and ‘‘multi-step’’ beam carrying a number of point masses and
rotary inertias [12]. Gürgöze and Erol [13,14] studied the forced vibration responses of a cantilever beam with
a ‘‘single’’ intermediate support.

The objective of this paper is to adopt the NAM to investigate the free and forced vibration characteristics
of a ‘‘multiple-span’’ uniform beam carrying a number of various concentrated elements and subjected to a
harmonic force.

2. Equation of motion and displacement function

Fig. 1 shows the sketch of a uniform beam with pinned–pinned (P–P) boundary conditions and R

intermediate pinned supports. It carries U various concentrated elements (including point masses, rotary
inertias, linear springs and/or rotational springs) and subjected to V harmonic forces. The points
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Fig. 1. Sketch for a uniform beam supported by pins, carrying various concentrated elements and subjected to harmonic concentrated

forces.
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corresponding to the locations of pinned supports, applied concentrated forces and various concentrated
elements are called ‘‘stations’’ in this paper.

The differential equation of motion for a uniform beam (cf. Fig. 1) with small deflections is given by

EI
q4yðx; tÞ

qx4
þ m̄

q2yðx; tÞ

q2t
¼ F ðtÞdðx� xiÞ, (1)

where E is Young’s modulus, I is second moment of the cross-sectional area, m̄ is mass per unit length of the
beam, y(x,t) is transverse displacement at position x and time t and F(t) is a force (with its magnitude equal to
external load per unit length) at time t. Besides, d(x�xi) is the Dirac delta with xi denoting the coordinate at
which the concentrated force F(t) applied.

If the applied concentrated force takes the form

F ðtÞ ¼ F̄ejoet, (2)

then, in the steady state, one has

yðx; tÞ ¼ Y ðxÞ ejoet, (3)

where Y(x) is the amplitude of y(x,t), oe is the exciting frequency of the applied harmonic forces, F̄ is
amplitude of F(t) and j ¼

ffiffiffiffiffiffiffi
�1
p

.
Substitution of Eqs. (2) and (3) into Eq. (1) gives

Y 0000 � b4Y ¼
F̄

EI
dðx� xiÞ, (4)

where

b4 ¼
o2

em̄

EI
(5a)

or

oe ¼ ðOÞ
2 EI

m̄L4

� �1=2

(5b)

with

O ¼ bL ¼ o2
e

m̄L4

EI

� �1=4

. (5c)

Eq. (4) is a non-homogeneous equation, its ‘‘complete’’ solution takes the form

Y ðxÞ ¼ ðC1 sin bxþ C2 cos bxþ C3 sinh bxþ C4 cosh bxÞ �
F̄

b4EI
dðx� xiÞ, (6a)

in which C1, C2, C3 and C4 are the unknown integration constants. From Eq. (6a) one sees that, for any beam
segment on which no concentrated force F(t) (with amplitude F̄ ) being applied, its displacement function will
take the form

Y ðxÞ ¼ ðC1 sin bxþ C2 cos bxþ C3 sinh bxþ C4 cosh bxÞ. (6b)

In other words, only the beam segment with concentrated force F(t) being applied at its end (or node),
Eq. (6a) should be used to derive the equilibrium equations concerned.

3. Coefficient matrices for intermediate stations and ends of the beam

For an arbitrary point located at xt (cf. Fig. 1), one obtains from Eq. (6a) or (6b)

Y 0tðxtÞ ¼ OCt;1 cos Oxt � OCt;2 sin Oxt þ OCt;3 cosh Oxt þ OCt;4 sinh Oxt, (7a)

Y 00t ðxtÞ ¼ �O
2Ct;1 sin Oxt � O2Ct;2 cos Oxt þ O2Ct;3 sinh Oxt þ O2Ct;4 cosh Oxt, (7b)
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Y 000t ðxtÞ ¼ �O
3Ct;1 cos Oxt þ O3Ct;2 sin Oxt þ O3Ct;3 cosh Oxt þ O3Ct;4 sinh Oxt, (7c)

where

xt ¼
xt

L
. (8)

3.1. Coefficient matrix [Bu] for an intermediate concentrated element

If the station numbering of an intermediate concentrated element including point mass, rotary inertia, linear
spring or rotational spring is u, then the continuity of deformations and equilibrium of the moments and
forces require that

Y L
u ðxuÞ ¼ Y R

u ðxuÞ, (9a)

Y 0
L
u ðxuÞ ¼ Y 0

R
u ðxuÞ, (9b)

Y 00
L
u ðxuÞ þ ðK

�
Ru � O4J�uÞY

0L
u ðxuÞ ¼ Y 00

R
u ðxuÞ, (9c)

Y 000
L
u ðxuÞ þ ðO

4m�u � K�TuÞY
L
u ðxuÞ ¼ Y 000

R
u ðxuÞ, (9d)

where

m�u ¼
mu

m̄L
; J�u ¼

Ju

m̄L3
; K�Tu ¼

KTuL3

EI
; K�Ru ¼

KRuL

EI
. (10a,b,c,d)

In Eqs. (10a–d), mu, Ju, KTu and KRu are respectively the lumped mass, rotary inertia, linear spring constant
and rotational spring constant at the uth station, while the right superscripts L and R in Eqs. (9a)–(9d) refer to
the ‘‘left’’ and ‘‘right’’ sides of station u.

Substitution of Eqs. (6b), (7a)–(7c) into Eqs. (9a)–(9d) leads to

Cu;1 sin Oxu þ Cu;2 cos Oxu þ Cu;3 sinh Oxu þ Cu;4 cosh Oxu � Cuþ1;1 sin Oxu

� Cuþ1;2 cos Oxp � Cuþ1;3 sinh Oxu � Cuþ1;4 cosh Oxu ¼ 0, ð11aÞ

Cu;1 cos Oxu � Cu;2 sin Oxu þ Cu;3 cosh Oxu þ Cu;4 sinh Oxu � Cuþ1;1 cos Oxu

þ Cuþ1;2 sin Oxp � Cuþ1;3 cosh Oxu � Cuþ1;4 sinh Oxu ¼ 0, ð11bÞ

Oð�Cu;1 sinOxu � Cu;2 cosOxu þ Cu;3 sinhOxu þ Cu;4 coshOxuÞ

� ðO4J�u � K�RuÞðCu;1 cosOxu � Cu;2 sinOxu þ Cu;3 coshOxu þ Cu;4 sinhOxuÞ

þ OðCuþ1;1 sinOxu þ Cuþ1;2 cosOxu � Cuþ1;3 sinhOxu � Cuþ1;4 coshOxuÞ ¼ 0, ð11cÞ

O3ð�Cu;1 cosOxu þ Cu;2 sinOxu þ Cu;3 coshOxu þ Cu;4 sinhOxuÞ

þ ðO4m�u � K�TuÞðCu;1 sinOxu þ Cu;2 cosOxu þ Cu;3 sinhOxu þ Cu;4 coshOxuÞ

þ O3ðCuþ1;1 cosOxu � Cuþ1;2 sinOxu � Cuþ1;3 coshOxu � Cuþ1;4 sinhOxuÞ ¼ 0, ð11dÞ

Writing Eqs. (11a)–(11d) in matrix form, one has

½Bu�fCug ¼ 0, (12)

where

fCug ¼ Cu;1 Cu;2 Cu;3 Cu;4 Cuþ1;1 Cuþ1;2 Cuþ1;3 Cuþ1;4

n o
(13)

and the coefficient matrix [Bu] is placed in Eq. (A.1) of the appendix at the end of this paper. In the above
expressions, the symbols, [ ] and { }, denote the rectangular matrix and column vector, respectively.
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3.2. Coefficient matrix [Br] for an intermediate rigid support

Similarly, if the station numbering of an intermediate rigid support is r, then the continuity of deformations
and equilibrium of moments require that

Y rðxrÞ ¼ Y rþ1ðxrÞ ¼ 0, (14a,b)

Y 0rðxrÞ ¼ Y 0rþ1ðxrÞ, (14c)

Y 00r ðxrÞ ¼ Y 00rþ1ðxrÞ. (14d)

Introducing Eqs. (6b), (7a) and (7b) into Eqs. (14), one obtains

Cr;1 sin Oxr þ Cr;2 cos Oxr þ Cr;3 sinh Oxr þ Cr;4 cosh Oxr ¼ 0, (15a)

Crþ1;1 sin Oxr þ Crþ1;2 cos Oxr þ Crþ1;3 sinh Oxr þ Crþ1;4 cosh Oxr ¼ 0, (15b)

Cr;1 cos Oxr � Cr;2 sin Oxr þ Cr;3 cosh Oxr þ Cr;4 sinh Oxr

� Crþ1;1 cos Oxr þ Crþ1;2 sin Oxr � Crþ1;3 cosh Oxr � Crþ1;4 sinh Oxr ¼ 0, ð15cÞ

� Cr;1 sin Oxr � Cr;2 cos Oxr þ Cr;3 sinh Oxr þ Cr;4 cosh Oxr

þ Crþ1;1 sin Oxr þ Crþ1;2 cos Oxr � Crþ1;3 sinh Oxr � Crþ1;4 cosh Oxr ¼ 0 ð15dÞ

or

½Br�fCrg ¼ 0 (16)

where

fCrg ¼ fCr;1 Cr;2 Cr;3 Cr;4 Crþ1;1 Crþ1;2 Crþ1;3 Crþ1;4 g. (17)

The coefficient matrix [Br] is placed in Eq. (A.2) of the appendix.

3.3. Coefficient matrix [Bv] for an intermediate applied force

If the station numbering for the intermediate harmonic concentrated force normal to the beam is v, then the
continuity of deformations and equilibrium of moments and forces require that

Y L
v ðxvÞ ¼ Y R

v ðxvÞ, (18a)

Y 0
L
v ðxvÞ ¼ Y 0

R
v ðxvÞ, (18b)

Y 00
L
v ðxvÞ ¼ Y 00

R
v ðxvÞ, (18c)

Y 000
L
v ðxvÞ þ

F̄ v

EI
¼ Y 000

R
v ðxvÞ. (18d)

Introducing Eqs. (6a), (7a) and (7c) into Eqs. (18a) and (18d), one obtains

Cv;1 sin Oxv þ Cv;2 cos Oxv þ Cv;3 sinh Oxv þ Cv;4 cosh Oxv

� Cvþ1;1 sin Oxv � Cvþ1;2 cos Oxv � Cvþ1;3 sinh Oxv � Cvþ1;4 cosh Oxv ¼ 0, ð19aÞ

Cv;1 cos Oxv � Cv;2 sin Oxv þ Cv;3 cosh Oxv þ Cv;4 sinh Oxv

� Cvþ1;1 cos Oxv þ Cvþ1;2 sin Oxv � Cvþ1;3 cosh Oxv � Cvþ1;4 sinh Oxv ¼ 0, ð19bÞ

� Cv;1 sinOxv � Cv;2 cosOxv þ Cv;3 sinhOxv þ Cv;4 coshOxv

þ Cvþ1;1 sinOxv þ Cvþ1;2 cosOxv � Cvþ1;3 sinhOxv � Cvþ1;4 coshOxv ¼ 0, ð19cÞ
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O3ð�Cv;1 cosOxv þ Cv;2 sinOxv þ Cv;3 coshOxv þ Cv;4 sinhOxvÞ

þ O3ðCvþ1;1 cosOxv � Cvþ1;2 sinOxv � Cvþ1;3 coshOxv � Cvþ1;4 sinhOxvÞ ¼ �
F̄ vL3

EI
. ð19dÞ

Writing Eqs. (19a)–(19d) in matrix form, one has

½Bv�fCvg ¼ fDvg. (20)

The coefficient matrix [Bv] is placed in Eq. (A.3) of the appendix, and

fCvg ¼ fCv;1 Cv;2 Cv;3 Cv;4 Cvþ1;1 Cvþ1;2 Cvþ1;3 Cvþ1;4 g, (21)

fDvg ¼ 0 0 0 �
F̄ vL

3

EI

� �
. (22)

3.4. Coefficient matrix [B0] for left end of the entire beam

If the left-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

Y 0ð0Þ ¼ Y 000ð0Þ ¼ 0. (23a,b)

The substitution of Eqs. (6b) and (7b) into Eqs. (23a) and (23b) leads to

C0;2 þ C0;4 ¼ 0, (24a)

�C0;2 þ C0;4 ¼ 0 (24b)

or in matrix form

½B0�fC0g ¼ 0, (25)

where

½B0� ¼

1 2 3 4

0 1 0 1

0 �1 0 1

� �
1

2

, (26)

fC0g ¼ fC0;1 C0;2 C0;3 C0;4 g. (27)

If the left-end support of the beam is free, then the boundary conditions are

Y 000ð0Þ ¼ Y 0000 ð0Þ ¼ 0. (28a,b)

From Eqs. (7b), (7c) and (28), one obtains the following boundary coefficient matrix:

½B0� ¼

1 2 3 4

0 �1 0 1

�1 0 1 0

� �
1

2

. (29)

If the left-end support of the beam is clamped, one obtains the following boundary coefficient matrix:

½B0� ¼

1 2 3 4

0 1 0 1

1 0 1 0

� �
1

2

. (30)
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3.5. Coefficient matrix [BN] for right end of the entire beam

If the right-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

Y N ðLÞ ¼ Y 00N ðLÞ ¼ 0 (31a,b)

with

N ¼ nþ 1, (32)

where n is total number of stations.
Substituting Eqs. (6b) and (7b) into Eqs. (31a) and (31b) give

CN ;1 sin Oþ CN ;2 cos Oþ CN;3 sinh Oþ CN ;4 cosh O ¼ 0, (33a)

�CN;1 sin O� CN;2 cos Oþ CN ;3 sinh Oþ CN ;4 cosh O ¼ 0 (33b)

or

½BN �fCNg ¼ 0, (34)

where

½BN � ¼

4N � 3 4N � 2 4N � 1 4N

sin O cos O sinh O cosh O

� sin O � cos O sinh O cosh O

� �
q� 1

q

, (35)

fCNg ¼ fCN;1 CN ;2 CN ;3 CN ;4 g. (36)

If the right-end support of the beam is clamped, then the boundary conditions are

Y NðLÞ ¼ Y 0N ðLÞ ¼ 0. (37a,b)

From Eqs. (6b), (7a) and (37), one obtains the following boundary coefficient matrix:

½BN � ¼

4N � 3 4N � 2 4N � 1 4N

sin O cos O sinh O cosh O

cos O � sin O cosh O sinh O

� �
q� 1

q

, (38)

If the right-end support of the beam is free, one obtains the following boundary coefficient matrix:

½BN � ¼

4N � 3 4N � 2 4N � 1 4N

� sin O � cos O sinh O cosh O

� cos O sin O cosh O sinh O

� �
q� 1

q

. (39)

In Eq. (39), q denotes the total number of equations for the integration constants given by

q ¼ 4N. (40)

From the above derivations one sees that one may obtain four equations from each intermediate station at
which a pinned support, external force, lumped mass, rotary inertia, linear spring or rotational spring is
located and two equations from either left-end or right-end station of the beam. Therefore, the total number of
equations for the integration constants is q ¼ 4N.

4. Determination of natural frequencies, mode shapes and frequency–response curves of the beam

4.1. Determination of natural frequencies and mode shapes of the beam

The integration constants relating to the left-end support and those relating to the right-end support of the
beam are defined by Eqs. (27) and (36), respectively, while those relating to the intermediate stations are
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determined by Eqs. (13), (17) and/or Eq. (21) depending upon concentrated element (such as lumped mass,
rotary inertia, linear spring and/or rotational spring), pinned support and/or applied force being located
there. The associated coefficient matrices are given by [B0] (cf. Eqs. (26), (29) or (30)), [Bu], [Br], [Bv]
(cf. Eqs. (A.1)–(A.3) of the appendix), and [BN] (cf. Eqs. (35), (38) or (39)). From the last equations concerned
one may see that the identification number for each element of the last four coefficient matrices is shown on
the top side and right-hand side of each matrix. Therefore, using the numerical assembly technique as done by
the conventional finite element method one may obtain a matrix equation for all integration constants of the
entire beam

½B̄�fC̄g ¼ fD̄g. (41)

For the case of free vibrations, the applied force amplitude F̄ is zero and Eq. (41) reduces to

½B̄�fC̄g ¼ 0. (42)

In such a case, one must set oe ¼ o with o denoting natural frequency of the vibrating system.
Non-trivial solution of Eq. (42) requires that

jB̄j ¼ 0, (43)

which is the frequency equation for the present problem.
In this paper, the incremental search method [15] is used to find the dimensionless frequency parameters, Ok

(k ¼ 1,2,y). For each dimensionless frequency parameter Ok, one may obtain the corresponding integration
constants from Eq. (42) and the substitution of last integration constants into displacement functions of the
associated beam segments will determine the corresponding mode shape of the beam, Y(k)(x).

4.2. Determination of forced vibration response of the beam

For the case of forced vibrations, from Eq. (41) one has

fC̄g ¼ ½B̄��1fD̄g. (44)

Thus, if the exciting frequency oe (or the associated dimensionless frequency parameter O) of the harmonic
forces is given, then one may obtain the corresponding integration constants from Eq. (44). The substitution
of last integration constants into the displacement functions of associated beam segments will determine the
corresponding vibration amplitude function of the beam, Y(x).

5. Numerical results and discussions

Before the vibration analysis of a multi-span uniform beam carrying various concentrated elements is
performed, the reliability of the theory and computer program developed for this paper are confirmed by
comparing the present results with those obtained from existing literature or conventional finite element
method (FEM). Unless otherwise mentioned, all numerical results of this paper are obtained based on a
uniform Euler–Bernoulli beam with the following given data: Young’s modulus E ¼ 2.069� 1011N/m2,
diameter d ¼ 0.05m, moment of inertia of cross-sectional area I ¼ 3.06796� 10�7m4, mass per unit length
m̄ ¼ 15:3879 kg=m, and total length L ¼ 1m. In FEM, the two-node beam elements are used and each
continuous beam is subdivided into 40 beam elements. Since each node has two degrees of freedom (dofs), the
total dof for the entire beam is 2(40+1) ¼ 82.

5.1. Reliability of the developed computer program

The beam studied in this Example 1 is shown in Fig. 2. It is a uniform pinned–pinned beam carrying three
point masses with rotary inertias at three locations, two linear springs and two rotational springs at the other
two locations, and having two intermediate pinned supports. The given data for the three point masses and
three rotary inertias are: m�1 ¼ m1=ðm̄LÞ ¼ 0:3, m�5 ¼ 0:6, m�7 ¼ 0:9 and J�1 ¼ J1=ðm̄L3Þ ¼ 0:001, J�5 ¼ 0:002,
J�7 ¼ 0:003 located at x1 ¼ x1/L ¼ 0.1, x5 ¼ 0.6 and x7 ¼ 0.8, respectively; those for the two linear springs and
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Fig. 2. Sketch for a pinned–pinned beam carrying three point masses, three rotary inertias, two linear springs, two rotational springs and

with two intermediate pinned supports.

Table 1

The lowest five dimensionless natural frequency parameters of a uniform beam carrying three point masses, three rotary inertias, two

linear springs, two rotational springs, and with two intermediate pinned supports

Boundary conditions Methods Dimensionless frequency parameters

O1 O2 O3 O4 O5

P–P Present 6.613083 8.214078 9.235993 11.506641 13.353669

FEM 6.605338 8.204520 9.225176 11.493720 13.338130

C–F Present 4.089879 7.633916 10.002664 10.948062 11.986887

FEM 4.089880 7.633918 10.002671 10.948070 11.986894
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two rotational springs are: K�T2 ¼ KT2L
3=ðEIÞ ¼ 10, K�T4 ¼ 20 and K�R2 ¼ KR2L=ðEIÞ ¼ 3, K�R4 ¼ 4 located at

x2 ¼ 0.2 and x4 ¼ 0.4, respectively; and the two intermediate pinned supports are located at x3 ¼ 0.3 and
x6 ¼ 0.7. Two types of boundary conditions (P–P and C–F) are studied. Where P, C and F represent the
abbreviations of pinned, clamped and free, respectively. The lowest five natural frequency parameters of the
beam are shown in Table 1. It is seen that the results of the present paper are in excellent agreement with those
of FEM. Figs. 3(a and b) show the lowest five mode shapes of the uniform beam with P–P and C–F boundary
conditions, respectively. In which, the 1st, 2nd, 3rd, 4th and 5th mode shapes are represented by the curves

, � , , and , respectively.
The beam studied in Example 2 is a cantilever beam as shown in Fig. 4. It is simply supported at x1 ¼ 0.5

and subjected to the action of a harmonic concentrated force F̄ 2 e
joet at free end (located at x2 ¼ 1.0). The

dimensionless frequency parameter and magnitude of the applied force are O ¼
ffiffiffi
5
p

and F̄ 2 ¼ 1, respectively.
The dimensionless vibration amplitudes ðȲ ðxÞmax ¼ Y ðxÞmax=ðF̄L3=EIÞÞat different locations of the beam
are given in Table 2. It is seen that the current numerical results are also in excellent agreement with those of
Ref. [14].

5.2. Forced vibration responses of a multiple-span beam carrying a number of various concentrated elements and

subjected to a harmonic force

In this subsection, the force vibration responses of the uniform beam shown in Fig. 2 subjected to the action
of a harmonic concentrated force FvðtÞ ¼ F̄ v e

joet located at various positions along the beam length are
studied (cf. Fig. 5).
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Fig. 3. The lowest five mode shapes of a uniform beam carrying three point masses, three rotary inertias, two linear springs, two rotational

springs, and with two intermediate pinned supports: (a) pinned–pinned (P–P) beam and (b) cantilever (C–F) beam.
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tj eeF  ω
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Fig. 4. Sketch for a cantilever beam with an intermediate pinned support and subjected to the action of a harmonic concentrated force

F̄2 e
joet at free end.

Table 2

The dimensionless vibration amplitudes at different locations of the cantilever beam with an intermediate pined-support and subjected to a

harmonic concentrated force at free end (cf. Fig. 4)

Dimensionless coordinates, x ¼ x/L Dimensionless amplitudes Ȳ ðxÞmax

Present Ref. [14]

0.0 0.000000 0.000000

0.1 �0.001380 �0.001380

0.2 �0.004136 �0.004138

0.3 �0.006197 �0.006198

0.4 �0.005501 �0.005503

0.5 0.000000 0.000000

0.6 0.011747 0.011742

0.7 0.028814 0.028804

0.8 0.049712 0.049702

0.9 0.073026 0.073011

1.0 0.097467 0.097442
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Fig. 5. Sketch for the pinned–pinned beam shown in Fig. 2 subjected to the action of a harmonic force F5ðtÞ ¼ F̄2 e
joet.

Fig. 6. The dimensionless vibration amplitudes Ȳ ðxÞmax of the beam carrying five concentrated elements with two intermediate pinned

supports and subjected to a harmonic force at x5 ¼ 0.5 (cf. Fig. 5). (a) Pinned–pinned (P–P) beam and (b) cantilever (C–F) beam.
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5.2.1. Forced vibration response amplitudes of the entire beam

For a harmonic force with dimensionless frequency parameter O ¼
ffiffiffi
5
p

and force amplitude F̄5 ¼ �1N or
F̄5 ¼ �4N located at x5 ¼ 0.5, Figs. 6(a) and (b) show the dimensionless vibration amplitudes of the beam
with P–P and C–F boundary conditions, respectively. In which, the dimensionless vibration amplitudes
ðȲ ðxÞmax ¼ Y ðxÞmax=ðF̄5L3=EIÞ ¼ Y ðxÞmax=ð1� 13=ð2:069� 1011 � 3:06796� 10�7ÞÞÞ due to F̄5 ¼ �1N and
F̄5 ¼ �4N are represented by the curves and , respectively.

5.2.2. Frequency– response curves for several points

The present example is the same as the last one, but the force amplitude is F̄ v ¼ �1N and the dimensionless
frequency parameter O is variable. For each value of O (from 0 to 14.0 with interval DO ¼ 0.001), one may
obtain the integration constants from Eq. (44). Then, by using Eq. (6), we compute the vibration amplitudes
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Fig. 7. The relationship for dimensionless frequency parameters (O) versus dimensionless amplitudes ðjȲ ðxÞjmaxÞ for the points located at

x ¼ 0.3, 0.4 and 0.5 of the pinned–pinned (P–P) beam subjected to a harmonic force with amplitude F̄ v ¼ �1N applied at: (a) x5 ¼ 0.5 and

(b) x9 ¼ 0.9 (cf. Fig. 5).

Fig. 8. The relationship for dimensionless frequency parameters (O) versus dimensionless amplitudes ðjȲ ðxÞjmaxÞ for the points located

at x ¼ 0.4, 0.5 and 1.0 of the cantilever (C–F) beam subjected to a harmonic force with amplitude F̄ v ¼ �1N applied at (a) x5 ¼ 0.5 and

(b) x9 ¼ 0.9 (cf. Fig. 5).
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when it is placed in different locations on the beam. Fig. 7(a) shows the relationship between the dimensionless
frequency parameters (O) and the dimensionless response amplitudes ððjȲ ðxÞjmax ¼ jY ðxÞjmax=ðF̄L3=EIÞÞÞ for
the points located at x ¼ 0.3, 0.4 and 0.5 of the P–P beam subjected to a harmonic force with amplitude
F̄ v ¼ �1N applied at x5 ¼ 0.5, where the horizontal axis is the dimensionless frequency parameter (O) and the
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vertical axis is the dimensionless vibration amplitude ðjȲ ðxÞjmaxÞ. The red ( ), blue ( ) and
green ( ) curves are for points located at locations x ¼ 0.3, 0.4 and 0.5, respectively. The vibration
amplitudes for the point located at x ¼ 0.3 are equal to 0 because it is on the pinned support of the beam. The
curves for the point located at either x ¼ 0.4 or 0.5 have peaks when the dimensionless frequency parameter
OE6.6, 8.2, 9.2, 11.5 and 13.3. This is because when the dimensionless frequency parameter O is near any of
the natural frequencies of the P–P beam, as shown in line 1 of Table 1, resonance appears. The
frequency–response curves shown in Fig. 7(b) are similar to those shown in Fig. 7(a) (webfigure), the only
difference is the harmonic force F̄ v ¼ �1N being applied at x9 ¼ 0.9 (rather than at x5 ¼ 0.5 for Fig. 7(a)). All
conditions for Fig. 8 (web figure) are the same as those for Fig. 7 except that: (i) the beam is with clamped–free
(C–F) boundary conditions; (ii) the frequency–response curves for the points located at x ¼ 0.4, 0.5 and 1.0
are determined. In Fig. 8, the frequency responses for the points located at x ¼ 0.4, 0.5 and 1.0 are represented
by the blue ( ), green ( ) and purple ( ) curves, respectively. It is the same as Fig. 7
that Fig. 8(a) is for the case of the harmonic force F̄ v ¼ �1N being applied at x5 ¼ 0.5 and Fig. 8(b) is at
x9 ¼ 0.9. It is seen that each frequency–response curve has a peak when OE4.1, 7.6, 10.0, 10.9 and 12.0.
Likewise, this is because when the dimensionless frequency parameter O is near any of the natural frequencies
of the C–F beam, as shown in line 3 of Table 1, resonance appears.
6. Conclusions
1.
 Using the numerical assembly method (NAM), one can obtain the ‘‘exact’’ solutions for the natural
frequencies and mode shapes of a uniform multi-span beam carrying a number of various concentrated
elements under different boundary conditions.
2.
 Using the NAM, one can also determine the ‘‘exact’’ vibration amplitude of the entire beam when it is
subjected to a harmonious force with a specified exciting frequency.
3.
 For a beam subjected to a harmonic force, one can determine the frequency–response curve for any point of
the beam using NAM. Because a peak will appear in each curve when the exciting frequency of the
harmonic force is near any of natural frequencies of the beam, one can determine natural frequencies of the
beam based on the peaks of any frequency–response curve.
Appendix

(A.1)

where yu ¼ Oxu, syu ¼ sinOxu, cyu ¼ cosOxu, sh yu ¼ sinhOxu, ch yu ¼ coshOxu, au ¼ �O4J�u þ K�Ru and
du ¼ O4mn

u � K�Tu.

(A.2)

where yr ¼ Oxr, syr ¼ sinOxr, cyr ¼ cosOxr, sh yr ¼ sinhOxr and ch yr ¼ coshOxr.
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(A.3)

where yv ¼ Oxv, syv ¼ sinOxv, cyv ¼ cosOxv, sh yv ¼ sinhOxv and ch yv ¼ coshOxv.
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[13] M. Gürgöze, Receptance Matrices of viscously damped systems subject to several constraint equations, Journal of Sound and

Vibration 230 (5) (2000) 1185–1190.
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